
High Performance
Web Pages

Real World Examples: Netflix Case Study

Bill Scott
CS193H. Fall 2008.
Stanford University

1

The Situation

All attention was focused on server side
Most pages 200 - 300 ms

Savings of 20 ms celebrated

Server side is a tiny fraction of the
performance pie

Typical Netflix page:

Server Side Client Side

2

Typical Performance

9/09 9/12 9/15 9/18 9/21 9/24 9/27

Day
Server Response

Post HTML to Onload

Client Render

Server + Client Render

Unload to Onload

3

Same Profile on Member Home

Total response/render times:
75% of customers experience less than10 seconds (which
means 25% are experiencing greater than 10 seconds)

42% less than 5 seconds

29% less than 3 seconds

Server response times:
Appear to be only at a maximum 4% of total response/
render time

75% of server response times are less than 1.15 seconds

Conclusion: Lots of room for client side
improvement

4

Goal

Measure request-to-response cycle
Gets at what the user actually experiences

Improve end user performance
Implement Steve Souder’s performance rules

5

The Plan
Metrics Capture (round trip tracing)

Apache - gzip, ffe, etag configuration, Proxy cache configuration

Integrate new Starbar into website

Better minification for JS & CSS (yui minifier)

Sprite Bob Graphic Images

Sprite Header Graphics

Sprite Queue graphic images

Configure CDN image assets to use FFE & create image version push
system

Move JS to the bottom, CSS to the top, better JS/CSS packaging

Switch from graphics based buttons to CSS/Text based buttons

Switch vignettes from graphics based to CSS/Text based graphic

Lighter weight BOB, QACL, Menu Nav

Reduce number of CDN cnames in use

6

Metrics Capture

7

Round Trip Tracers

Client side javascript + server side Java
captures time points
Allows us to measure roundtrip time from
request to render

Prior
Page PageResponseRequest

Web App

Java
servlet

JSP

Java

DHTML DHTML

8

Prior
Page

 PageResponseRequest

Web App

js:unload()

A
js:load()

G
<HEAD> </BODY>

FD

CB E
service()

Measurement Points

9

Prior
Page

 PageResponseRequest

Web App

js:unload()

A
js:load()

G
<HEAD> </BODY>

FD

CB E
service()

• 8 time stamps
• 4 client, 3 server

Measurement Points

9

Prior
Page

 PageResponseRequest

Web App

js:unload()

A
js:load()

G
<HEAD> </BODY>

FD

CB E
service()

• 8 time stamps
• 4 client, 3 server

captured
in

NetflixBaseServlet.
service() after the

customer is
acquiredcaptured in

javascript onunload()
in previous page

captured when
servlet generates
<HEAD> and JS
for timestamp

captured
when servlet

generates JS for
timestamp and

</BODY> captured in
javascript onload() in

rendered page

captured
when browser

renders
<HEAD>

captured
when browser

renders </BODY>

Measurement Points

9

Prior
Page

PageResponseRequest

Web App

js:unload()

A
js:load()

GF

CB E

D
<HEAD>
getTime()

getTime()
</BODY>

emits
<HEAD>

emits
</BODY>service()

browser render time

10

Prior
Page

PageResponseRequest

Web App

js:unload()

A
js:load()

GF

CB E

D
<HEAD>
getTime()

getTime()
</BODY>

emits
<HEAD>

emits
</BODY>service()

browser render time

• C&D and E&F are don’t happen together
• servlet generation time vs browser

render time
10

←

Prior
Page

PageResponseRequest

Web App

js:unload() js:onload()<HEAD>
getTime()

getTime()
</BODY>

service()
after
customer
acquired

emits
<HEAD>

emits
</BODY>

GFA D

CB E

browser render time

css loading, asset loading, javascript loading

Server Response

Client Render

After HTML body

Server to Client Render (G-D) + (C-B)

Prior Page till Client Rendered

Logging
Database

11

←

Prior
Page

PageResponseRequest

Web App

js:unload() js:onload()<HEAD>
getTime()

getTime()
</BODY>

service()
after
customer
acquired

emits
<HEAD>

emits
</BODY>

GFA D

CB E

HTTP
request/

response for
HTML page

browser render time

css loading, asset loading, javascript loading

Server Response

Client Render

After HTML body

Server to Client Render (G-D) + (C-B)

Prior Page till Client Rendered

Logging
Database

11

←

Prior
Page

PageResponseRequest

Web App

js:unload() js:onload()<HEAD>
getTime()

getTime()
</BODY>

service()
after
customer
acquired

emits
<HEAD>

emits
</BODY>

GFA D

CB E

HTTP request/
responses for CSS, JS,

images, etc.
HTTP

request/
response for
HTML page

browser render time

css loading, asset loading, javascript loading

Server Response

Client Render

After HTML body

Server to Client Render (G-D) + (C-B)

Prior Page till Client Rendered

Logging
Database

11

Prior
Page

PageResponseRequest

Web App

js:unload() js:load()

GF
service()

C

elapsed_server_response (E-B)

elapsed_client_render (G-D)

elapsed_client_render_
post_server (G-F)

elapsed_server_plus_client (G-D) + (C-B)

B E

D
<HEAD>
getTime()

getTime()
</BODY>

emits
<HEAD>

emits
</BODY>

browser render time

elapsed_client_request (G-A)

A

12

Prior
Page

PageResponseRequest

Web App

js:unload() js:load()

GF
service()

C

elapsed_server_response (E-B)

elapsed_client_render (G-D)

elapsed_client_render_
post_server (G-F)

elapsed_server_plus_client (G-D) + (C-B)

B E

D
<HEAD>
getTime()

getTime()
</BODY>

emits
<HEAD>

emits
</BODY>

browser render time

• 5 metric values; 2 on client, 2 on server, 1
timed on both (G-D) + (C-B)... there is a
gap however

elapsed_client_request (G-A)

A

12

Prior
Page

PageResponseRequest

Web App

A
js:load()

GF
service()
after
customer
acquired

C

elapsed_server_response = 691

elapsed_client_render = 2338

elapsed_client_render_
post_server = 1425

elapsed_server_plus_client (G-D) + (C-B) = 2996 + D-C gap?

B E

/MemberHome

D

(c-b)+gap = 658

<HEAD>
getTime()

getTime()
</BODY>

emits
<HEAD>

emits
</BODY>

browser render time

js:unload()

13

Prior
Page

PageResponseRequest

Web App

A
js:load()

GF
service()
after
customer
acquired

C

elapsed_server_response = 691

elapsed_client_render = 2338

elapsed_client_render_
post_server = 1425

elapsed_server_plus_client (G-D) + (C-B) = 2996 + D-C gap?

B E

/MemberHome

D

(c-b)+gap = 658

<HEAD>
getTime()

getTime()
</BODY>

emits
<HEAD>

emits
</BODY>

browser render time

js:unload()

• Navigated directly from another site (no G-
A) available

13

Prior
Page

PageResponseRequest

Web App

js:unload() js:onload()

G

<HEAD>
getTime()

getTime()
</BODY>

F
service()
after
customer
acquired

elapsed_server_response = 684

elapsed_client_render = 3091

elapsed_client_render_
post_server = 533

elapsed_server_plus_client (G-D) + (C-B) = 3491 + D-C gap?

(c-b)+gap = 400

4310

 819

browser render time

A

css loading, asset loading, javascript loading

emits
<HEAD>

emits
</BODY>

D

CB E

/Queue

14

Prior
Page

PageResponseRequest

Web App

js:unload() js:onload()

G

<HEAD>
getTime()

getTime()
</BODY>

F
service()
after
customer
acquired

elapsed_server_response = 684

elapsed_client_render = 3091

elapsed_client_render_
post_server = 533

elapsed_server_plus_client (G-D) + (C-B) = 3491 + D-C gap?

(c-b)+gap = 400

4310

 819

browser render time

A

css loading, asset loading, javascript loading

emits
<HEAD>

emits
</BODY>

D

CB E

/Queue

HTTP
request/

response for
HTML page

14

Prior
Page

PageResponseRequest

Web App

js:unload() js:onload()

G

<HEAD>
getTime()

getTime()
</BODY>

F
service()
after
customer
acquired

elapsed_server_response = 684

elapsed_client_render = 3091

elapsed_client_render_
post_server = 533

elapsed_server_plus_client (G-D) + (C-B) = 3491 + D-C gap?

(c-b)+gap = 400

4310

 819

browser render time

A

css loading, asset loading, javascript loading

emits
<HEAD>

emits
</BODY>

D

CB E

/Queue

HTTP request/
responses for CSS, JS,

images, etc.

HTTP
request/

response for
HTML page

14

Prior
Page

PageResponseRequest

Web App

js:unload() js:onload()

G

<HEAD>
getTime()

getTime()
</BODY>

F
service()
after
customer
acquired

elapsed_server_response = 684

elapsed_client_render = 3091

elapsed_client_render_
post_server = 533

elapsed_server_plus_client (G-D) + (C-B) = 3491 + D-C gap?

(c-b)+gap = 400

4310

 819

browser render time

A

css loading, asset loading, javascript loading

emits
<HEAD>

emits
</BODY>

D

CB E

/Queue

HTTP request/
responses for CSS, JS,

images, etc.

HTTP
request/

response for
HTML page

• Internal nav (G-A)
• Network packets

happen in parallel
14

What to Capture

Time-stamp
Customer ID
Page (logical name)
URL
Referrer
Full round trip request time
Server Reponse time
Client render time
Time from HTML processing to Onload
Server Response + Client Render

15

What to Capture

Details
IP address
User agent
Connection type
Server name
Browser
OS
Bandwidth test

16

Logged Metrics

Logged to database
Self-Service Portal for plotting metrics

17

Firebug Extension

Firebug extension that shows real-time
performance measures for a given page

18

Jiffy Firebug Extension

19

Performance
Improvements

20

Performance Steps

GZIP HTML, Javascript and CSS
(exception old netscape browsers and IE6 gets only
compressed HTML)

Far future expires header for Javascript & CSS
Turn off etags

These often force unnecessary requests, we don't use them
so turning them off can help performance.

Proxy Cache Configuration
For browsers behind a proxy cache we tell the proxy server
that we are handling this. This prevents some errors that
might occur when a proxy cache server tries to serve up
cached content for a browser that doesn't expect it (already
served the URL to one that did).

21

GZIP

22

23

23

Rewriting Queue

Queue was completely re-written from
scratch

Changed from Java generated HTML to JSP generated HTML

Migrated to Struts 2 Framework

Idea was to radically clean up old crusty code

24

Side effect: Larger payload due to whitespace
in JSP

Queue Performance Degraded

0

1,250

2,500

3,750

5,000

<=20 21-100 101-250

Before Refactor
After Refactor

25

Gzip Components

Can Gzip scripts, stylesheets, JSON, XML, etc.
Reduces response size by about 70%
90% of all traffic is handled by browsers that
support gzip
For those browsers that don’t support gzip,
apache supports Vary response headers
automatically
Requires apache configuration (mod_gzip or
mod_deflate)

26

GZIP: Apache Configuration
<Proxy *>
 SetOutputFilter DEFLATE
</Proxy>

<Location />
 # GZIP COMPRESSION.
 # For all browsers turn on html, css and javascript gzip compression
 # For old browsers turn OFF all gzip compression
 # For IE6 gzip html only

 # Allow gzip compression for html, css, and javascript
 AddOutputFilterByType DEFLATE text/html text/javascript text/css application/x-javascript

 # Netscape 4.x has some problems...
 BrowserMatch ^Mozilla/4 gzip-only-text/html

 # Netscape 4.06-4.08 have some more problems
 BrowserMatch ^Mozilla/4\.0[678] no-gzip

 # MSIE masquerades as Mozilla, but it is fine
 BrowserMatch \bMSIE\s7 !no-gzip !gzip-only-text/html

 # Turn off gzip for images, pdf, zips and swfs
	

 SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary
	

 SetEnvIfNoCase Request_URI \.pdf$ no-gzip dont-vary
	

 SetEnvIfNoCase Request_URI \.zip$ no-gzip dont-vary
	

 SetEnvIfNoCase Request_URI \.swf$ no-gzip dont-vary

 </Location>

27

FFE, Cache Control, eTags
<LocationMatch "\.(css$|js$)">
 # Far Future Expires for Javascript and CSS
 Header set Expires "Thu, 15 Apr 2020 20:00:00 GMT"
</LocationMatch>

<Location />
 Header unset ETag
 FileETag None

 #Header append Vary User-Agent env=!dont-vary
 Header set Cache-Control "private"

 </Location>

28

GZIP, FFE, eTags, Cache: Results

Queue Payload improvement

Network outbound traffic cut in half

29

GZIP, FFE, eTags, Cache: Results

Queue Payload improvement

Network outbound traffic cut in half

29

GZIP, FFE, eTags, Cache: Results

Queue Payload improvement

Network outbound traffic cut in half

29

GZIP, FFE, eTags, Cache: Results

Queue Payload improvement

Network outbound traffic cut in half

29

GZIP, FFE, eTags, Cache: Results

Performance improvement: 13-25%

0

1,250

2,500

3,750

5,000

<=20 21-100 101-250

Before Refactor After Refactor After GZIP

30

Far Future Expires

Avoids unnecessary HTTP requests
Requires version naming of files (which we do
for some files)
Only aids those with an primed cache
What % come with empty cache?
At Yahoo! it averaged 40-60%

31

How Browser Handles Expires
With Empty Cache (component not cached)

GET Request for component

With Primed Cache (component is cached)
Has Far Futures Expires Header

- Browser finds in cache

- Determines not stale

- Reads from local cache

No FFE

- Does NOT have Far Future Expires Header

- Browser finds in cache

- Determines it is “stale” (expired)

- Makes a Conditional GET

- If it has not changed

- Reads from Local Cache

- If it has changed

- Performs a GET Request

32

There was an issue (Safari)

For a given HTTP request, the server may
respond with a HTTP status of 204. This
means ‘no content’ changed.

Used throughout Netflix site

Started in 2000 with first star bars on the web!

Once we turned on gzip, Apache for some
reason attempted to compress NO
CONTENT responses
Some builds of Safari 3 choked on this

33

Star Bars

34

Star Bars everywhere

35

Web App

Prior
Page

PageResponseRequest

js:unload() js:onload()

G

<HEAD>
getTime()

getTime()
</BODY>

F
service()
after
customer
acquired

elapsed_server_response = 684

elapsed_client_render = 3091

elapsed_client_render_
post_server = 533

elapsed_server_plus_client (G-D) + (C-B) = 3491 + D-C gap?

(c-b)+gap = 400

4310

 819

browser render time

A

css loading, asset loading, javascript loading

emits
<HEAD>

emits
</BODY>

D

CB E

/Queue

36

Web App

Prior
Page

PageResponseRequest

js:unload() js:onload()

G

<HEAD>
getTime()

getTime()
</BODY>

F
service()
after
customer
acquired

elapsed_server_response = 684

elapsed_client_render = 3091

elapsed_client_render_
post_server = 533

elapsed_server_plus_client (G-D) + (C-B) = 3491 + D-C gap?

(c-b)+gap = 400

4310

 819

browser render time

A

css loading, asset loading, javascript loading

emits
<HEAD>

emits
</BODY>

D

CB E

/Queue

HTTP request/
responses for CSS,

JS, images, etc.

36

What HTTP requests?
Where did the time go (180 item Q) Where did the time go (180 item Q)

Images 57.1% 3873 2500 Images 31.7% 3873

Javascript 7.3% 493 300 Star bars 25.4% 1723

CSS 1.3% 91 Javascript 7.3% 493

HTML 23.9% 1624 CSS 1.3% 91

Redirect 5.2% 356 HTML 23.9% 1624

Other 5.1% 346 Redirect 5.2% 356

6783 Other 5.1% 346

6783

Everthing Else 74.6%

Star bars 25.4% 1723 Everthing Else 74.6%

58%

7%

1%

24%

5%
5%

Images

Javascript

CSS

HTML

Redirect

Other

Lots of Time for Star Bars

75%

25%

Everthing Else

Star bars

33%

25%

7%

1%

24%

5%
5%

Images

Star bars

Javascript

CSS

HTML

Redirect

Other

37

Image Fetching is Costly

Where did the time go (180 item Q) Where did the time go (180 item Q)

Images 57.1% 3873 2500 Images 31.7% 3873

Javascript 7.3% 493 300 Star bars 25.4% 1723

CSS 1.3% 91 Javascript 7.3% 493

HTML 23.9% 1624 CSS 1.3% 91

Redirect 5.2% 356 HTML 23.9% 1624

Other 5.1% 346 Redirect 5.2% 356

6783 Other 5.1% 346

6783

Everthing Else 74.6%

Star bars 25.4% 1723 Everthing Else 74.6%

58%

7%

1%

24%

5%
5%

Images

Javascript

CSS

HTML

Redirect

Other

Lots of Time for Star Bars

75%

25%

Everthing Else

Star bars

33%

25%

7%

1%

24%

5%
5%

Images

Star bars

Javascript

CSS

HTML

Redirect

Other

38

Spriting Star Bars
Originally 51 separate images; not sprited
New version single sprite for all star bars

39

Surprising performance hit

40

What went wrong?

Old star bars did inline event attachment
onmouseover=””

generated with the page

New starbars attach events on DomReady
with hundreds of events to attach this can cause a slow
down

Solutions (3)
generate inline events (yuck)

change to container based event model (lots of global work)

use a flyweight pattern of a single interactive star bar shared
across the page

Solution: inline events

41

After inline events: improved

Most members experienced another 10%
improvement

42

Other Challenges

43

Large Table

IE7 & IE6 suck when rendering large tables
Some solutions

Break large table into smaller chunks

- Rendering is faster since triggering re-render of smaller
table is faster than re-rendering large table

Used fixed layout for table to prevent re-rendering

Use progressive loading

- Either a manual approach to load additional

- Or dynamically load in the background

- Or a combination of both

44

JS at Bottom & CSS at Top

Scripts scattered throughout the page
Causes browsers to block while script code is executed

Queue Example
To speed up perceived page rendering time you can pre-
load background images specified in CSS

However, this has to be near the top

On IE7 & IE6 this caused significant delays (5-10 seconds on
large queue)

Removing the performance hack decreased page load time!
<script>
if (document.images) {
 img1 = new Image();
 img2 = new Image();
 img1.src = "../path/to/image-01.gif";
 img2.src = "../path/to/image-02.gif";
}
</script>

45

Drag and Drop

The sheer number of rows (up to 500) can
cause a page to croak for adding drag & drop

Issues
Exploding number of event handlers (use container events)

Dynamic cursors in IE6 (avoid)

Class switching (instead use style switching)

Extra calculations for drop targets at drag start (e.g., 500 rows)

- Don’t measure everything. Measure prototypical row. Flag
exceptions.

46

jQuery Optimization

Need: find drop targets dynamically
Normal way was ok

But more obtuse way is faster

$(“td.dtc em”, “#dvd-queue”)

$("em", "#dvd-queue")
 .filter(function() {
 return this.parentNode.className === 'dtc';
 })

47

Browser Variances

48

Browser Variance

Easy to forget that the experience varies
greatly per browser
Browser share

IE7 50%

IE6 20%

FF3 22%

Safari 6%

49

Safari much faster

Queue median times all sizes

50

Crazy Mistakes

51

Oops

Script running got triggered by the loss of a
boolean on the page
Notice slightly elevated (before moving JS to
bottom)

IE 7
> 250 Line returns

almost to normal

52

Oops

Simply removed a <STYLE> block in the
middle of the page

IE 7
> 250 Line returns

to normal

53

Lessons Learned

54

Lessons

Most of the Yahoo! recommendations are a
sure bet (far futures, gzip, etag, etc.)
The easiest win is gzip
Not all pages are created equal
A lot of time is spent fetching images
Nothing beats simple design, separation of
concerns, clean architecture
It’s the little stuff multiplied that you have to
watch out for

55

Lessons

The surest way to improve performance (and
keep improving performance) is to measure,
measure, measure

Use some way to capture the full user experience time

Be able to log & graph trends

Median works best

Make sure your numbers are statistically significant

Don’t be surprised by performance
degradation when you expected performance
improvement

56

Lessons

Browsers are not created equal
Some browsers will eat your lunch (read IE)

Tools are essential
Firebug, round trip tracing, self-service dashboard,
HammerHead, yslow, Toad, Excel, Jiffy Extension, Round Trip
Extension, and old-fashioned instrumentation.

Science is messy
E.O. Wilson

57

