
lean front end engineering
bringing great design to life
by applying lean principles to front-end engineering

bill scott (@billwscott)
sr. director, user interface engineering, paypal

front-end masters series
nov 30, 2012

schedule
 9:15 am. building products (60 mins)
10:15 am. break (15 mins)
10:30 am. lean ux (75 mins)
11:45 am. q & a (15 mins)
12:00 pm. lunch (60 mins)
 1:00 pm. lean tech stack (80 mins)
 2:20 pm. break (20 mins)
 2:40 pm. anti-patterns (75 mins)
 3:55 pm. q & a and wrapup (20 mins)
 4:15 pm. dismiss.

building products
what the problem is and why we are here today

quick poll

purpose
equip you with how to work with your partners to
bring great experience to life

apply lean UX & lean technology approaches to front-
end engineering

end of the day: bring awesome experiences to life

paypal?
what can we learn from paypal?

“culture of a long shelf life”

team roles

standard process creates distinct work phases

boundaries are the hand-off points between roles

product
(business) design engineering

product
product manager, business
analyst

owns the features. doesn’t
do design. drives by
hypothesis.

typically produces PRD

design
UED, UX, ID, IA, VizDe,
Content, designer

not responsible for
engineering the experience,
but designing the
experience.

typically consumes PRD and
produces design specs.

engineering
front-end engineer, user
interface engineer, web
developer.

not the designer, but the
engineer that creates the
experience.

typically consumes UI specs
and PRDs (for context).

typical product life cycle

product
(business) design engineering

(agile team)

PRD UX spec

(wall) (wall)

customer

delivery

upon delivery, team disbands and forms into new teams

what’s wrong with this?
teams work in isolated phases

process & documentation stand in to patch this
together

focus is on delivery instead of continuously improving
the experience

lean ux
a good portion of the workshop today will be focused
on lean ux as a way to

break down the walls between teams
continuously learn from users
work in a highly collaborative manner

@netflix

different way of working
only customer is the member (no internal customers)

rarely talked about the “machine”. Talked about members.

culture - rapid experimentation vs. long shelf life
get it out live as fast as possible

fail fast/learn fast

don’t over think it

rapid experimentation

Follow Build-Test-Learn

Design for volatility

Design for throwaway-ability

netflixA

B

C

D

E

F

G

A'

B'

C'

D'

E'

F'

G'

C A'

At Netflix 90% or more of
the UI code was thrown
away every year.

Doesn’t take too many
tests to result in lots of
throw away code.

most sales of TurboTax
happened at tax season. this
led to conservative culture

one major initiative a year.

intuit
before

test over 500 different
changes in a 2 1/2
month tax season.

running up to 70 tests
per week.

intuit
after

lessons learned

design for volatility

how buildings learn

our software is always
tearing itself apart (or at
least it should)

recognize that different
layers change at different
velocities

All buildings are predictions.
All predictions are wrong.
There's no escape from this
grim syllogism, but it can be
softened. - Stewart Brand

velocity changes by layer
recognize that different parts of tech stack change at
different velocities

“any building is actually a hierarchy of pieces, each of
which inherently changes at different rates” - Stewart
Brand. How Buildings Learn.

design for throwaway-ability (volatility)!

“use before you reuse” (optimize for change)

utilize packaging or paths to capture experiments

start with experience

experience vs components

experience vs components

why start with experience?
stay honest & pure by having experience be the driver

(not what your boss thinks or what looks good on
your resume or what the loudest one in the room
thinks)

remember

use before you reuse
let the experience drive the engineering
reuse is an engineering optimization. use is what users
do. reuse is what engineers do.

build in rapid experimentation

build in rapid experimentation
think of the UI layer as “the experimentation layer”

early rapid prototyping leads to learnings to get into
the right ballpark

follow with live A/B Testing. Lots of it.
creates a healthy environment with constant customer
feedback loops
contrast this with “long shelf life”
culture

q & a

break
20 minutes

lean ux

lean manufacturing
comes from the manufacturing revolution

draws upon the knowledge of individuals
shrinking of batch sizes
just in time production and inventory control
acceleration of cycle times

methodologies like kanban which say stories aren’t
complete until learnings happen

lean startup
built on the principles of lean
manufacturing

a startup is a human institution designed
to create a new product or service under
conditions of uncertainty

developing experimentation systems that allow teams
to move at the speed of these systems instead of the
speed of “caesar giving a thumbs up or down”

lean startup
minimum viable product (MVP)

build/test/learn

when to pivot (or persevere)

kanban - simple tracking of stories; end state is
validated or not

small batches

lean ux?

typical product life cycle

product
(business) design engineering

(agile team)

PRD UX spec

(wall) (wall)

customer

delivery

what is wrong with current UX?
became a deliverables-based practice instead of
experience-based practice

results in tons of waste when coupled with waterfall
methodologies

even with agile development, the design process is
still waterfall

depends on predictive documentation

lean ux @paypal

whiteboard
to code code to usability

product/Design
team

user interface
engineers

usability/
customers

PayPal co-located project

lean ux
minimum viable product (MVP)

build/test/learn

when to pivot (or persevere)

kanban - simple tracking of stories; end state is
validated or not

small batches

three key principles
for lean ux

shared
understanding
the more understanding the
less documentation

but this doesn’t mean NO
documentation

you need whatever is
needed to gain a shared
understanding

deep
collaboration
strong belief that ideas come
from many different voices

trust is essential

all efforts never stray far from
collaborative efforts

continuous
customer
feedback
this is the lifeblood of the
team

gets rid of politics

turns a team outside-in

healthy product life cycle

Discover
Customer
Insights

Define
Customer
Problems

Define
Solution

Concepts

Deliver &
Test

Solutions
CDI

agile streams

this is the agile process we all know and love

will have UI focused streams

will have some form of sprint 0 (S0) to resolve architecture and starting
point stories

fed by the lean track as well as other exercises to create story backlog

DEV STREAM(S)

S
C

R
U

M

T
E

A
M

SUI STREAM(S)

SPRINTSPRINTSPRINT SPRINTSPRINTSPRINT

DEV

Developer
streams focused
on non-UIE
(backend
systems,
services, APIs,
application flows.

PMUED

PM

UIE

SM *
SM *

UIE Agile Stream
hardens the UI code
for production works
closely with dev
teams and other
streams. This is the
delivery track for the
experience..

S0

lean ux/agile ux

product, design & UI engineering work in
lean startup manner

output is getting to customers for testing
early & often (quick cadence)

not delivering full product, but user-
testable product

build/test/learn cycle

generates user stories, refines solution

light on “ceremonies”

not pure agile

USABILITY USABILITY USABILITY

Define
Solution

Concepts

Deliver &
Test

Solutions

USABILITY USABILITY USABILITY USABILITY

LEAN UX/AGILE UX STREAM*
PMUED

UIE
Close collaboration
between product,
design &
engineering.
Refines customer
solution. Focus is
on rapid learning
from usability
studies. Not on
delivery. Does not
follow the agile/
scrum model.

lean & agile

DEV STREAM(S)

USABILITY USABILITY USABILITY

S
C

R
U

M

T
E

A
M

SUI STREAM(S)

SPRINTSPRINTSPRINT SPRINTSPRINTSPRINT

Node Webcore
Mock Stack

Production Stack

DEV

Developer
streams focused
on non-UIE
(backend
systems,
services, APIs,
application flows.

Define
Solution

Concepts

Deliver &
Test

Solutions

PMUED

L
E

A
N

T
E

A
M

PM

USABILITY USABILITY USABILITY USABILITY

LEAN UX/AGILE UX STREAM*
PMUED

UIE
Close collaboration
between product,
design &
engineering.
Refines customer
solution. Focus is
on rapid learning
from usability
studies. Not on
delivery. Does not
follow the agile/
scrum model.

SM *

PM

UED

UIE

DEV

SM

*

Product Manager

User Experience & Design: interaction
design, visual design, content, etc.

User interface engineer (frontend eng, webdev)

Developer. Non-user interface engineer

Scrum Master (and agile coaches)

Other scrum team members: QA,
i18n, Risk, Compliance, InfoSec, etc.

SM * UIE Agile Stream
hardens the UI code
for production works
closely with dev
teams and other
streams. This is the
delivery track for the
experience..

S0

key learnings
takeaways from our lean ux teams

lean is not agile
avoid adopting all of the agile ceremonies in the
lean ux track

agile vs lean
agile focuses on engineering delivery

lean focuses on learning

agile contains many “ceremonies”

lean contains few “ceremonies”

agile vs lean
Agile lean ux

outcome? working product at the end of
each sprint

user testable experience at the
end of each sprint. Refines UI,
contracts & data models. Feeds
stories into agile

cadence? 2 or 3 week sprints starts with 1 week sprints, later
moves to less frequent sprints

definition of done? pass acceptance criteria learn something from customer

use of stories? stories feed the agile stream. It is
the unit of work

stories are much simpler. solution
concepts replace stories

planning tools? utilizes tools to be able to
manage backlog and stories

no need for anything more
complex than a simple list

working code? yes UI bits: yes
dev bits: no. simulated

focus? engineering delivery experience learning

ceremonies? full set of agile ceremonies:
scrums, scrum of scrums,
backlogs, grooming, planning,
retrospectives, t-shirt sizing, etc.

light on ceremonies: emphasis on
as little process as possible, but
has its own form of backlogs,
planning, retrospectives.

relationship to agile feeds stories into the agile
stream. UI agile stream is tightly
coupled to lean ux stream.
loosely coupled to the dev
streams.

co-locate if at all possible
high bandwidth “meatspace” facilitates shared
understanding and deep collaboration and time
with the customer

suggestions
at a minimum teams should come together for the
first few weeks to build shared understanding, deep
collaboration and getting feedback from customers

for distributed members use high bandwidth
communication where possible (skype, tele-presence)

high bandwidth
communication
necessary.

github counterpoint
electronic: discussion, planning and operations
process should be in high fidelity electronics.

available: work should be visible and expose process.
work should have a URL.

asynchronous: almost nothing should require direct
interruption.

lock-free: avoid synchronization points.

cooperation without coordination

http://tomayko.com/writings/adopt-an-open-source-process-constraints

http://tomayko.com/writings/adopt-an-open-source-process-constraints
http://tomayko.com/writings/adopt-an-open-source-process-constraints

create a team
working agreement

team working agreement
decide who is the decision maker
define your cadence
define how you will work together
define your hypotheses

team working agreement
decide who is the decision maker
define your cadence
define how you will work together
define your hypotheses

sprint faster than agile
deliver to customers as often as possible

sprint faster
focus on getting to customer as early and as often as
possible

removes the politics in the team as this becomes the
arbiter

you can slow down this cadence after you converge
on key hypotheses and potential solutions

sketch to code

sketch to code
this is a forcing function.

it brings about a close collaboration between engineering
and design
it creates a bridge for shared understanding

requires a lot of confidence and transparency

we will discuss rapid prototyping later

make the spec real
the prototype becomes the spec

make the spec real
there are many, many prototyping tools available now

you can create a living
spec with these

however the fidelity
is never the same as
real code

recommend HTML
prototyping
(more on this later)

but what about docs?
watch out for “predictive documentation”

watch out for documentation that replaces
collaboration or is a band-aid for bad process

good documentation will enhance collaboration,
shared understanding and disseminate learnings

example: spotify

example: spotify
squads run like lean startups

spotify: squad
similar to scrum team. feels
like startup

long term mission: build &
improve the product. stay
long term on the product.

apply lean startup principles
like MVP

“think it, build it, ship it,
tweak it”

emphasis on great
workspace

spotify: tribes
collection of squads that
work in a related area

incubators for tribes

hold regular gatherings

spotify: chapters
and guilds
chapters represent
horizontal practices within a
tribe

guilds represent horizontal
practices across tribes

more Info
๏ Jeff Gothelf - the lean ux advocate

http://www.jeffgothelf.com/blog/

๏ lean ux article
http://uxdesign.smashingmagazine.com/2011/03/07/
lean-ux-getting-out-of-the-deliverables-business/

๏ article I wrote back in 2010 on principle of shared
understanding
http://52weeksofux.com/post/2403607066/building-a-
shared-understanding

http://www.jeffgothelf.com/blog/
http://www.jeffgothelf.com/blog/
http://uxdesign.smashingmagazine.com/2011/03/07/lean-ux-getting-out-of-the-deliverables-business/
http://uxdesign.smashingmagazine.com/2011/03/07/lean-ux-getting-out-of-the-deliverables-business/
http://uxdesign.smashingmagazine.com/2011/03/07/lean-ux-getting-out-of-the-deliverables-business/
http://uxdesign.smashingmagazine.com/2011/03/07/lean-ux-getting-out-of-the-deliverables-business/
http://52weeksofux.com/post/2403607066/building-a-shared-understanding
http://52weeksofux.com/post/2403607066/building-a-shared-understanding
http://52weeksofux.com/post/2403607066/building-a-shared-understanding
http://52weeksofux.com/post/2403607066/building-a-shared-understanding

lunch break

lean engineering
enabling lean ux through the technology stack

the way it was...
my journey through software development

building a game
circa 1985
original Mac Quickdraw Toolkit
provided some GUI framework
pieces (like the Open File Box)

this bit of “path of least
resistance” was a powerful
boost to consistency and
creating nice looking Macintosh
UIs

but there was still a lot left to
create on your own

developing a UI was hard

no internet. open source was practically non-existent

hard to build (all native + assembly code)

long shelf life (long release cycles with 3.5” disk
deployment)

developing a UI was hard

no internet. open source was practically non-existent

hard to build (all native + assembly code)

long shelf life (long release cycles with 3.5” disk
deployment)

’85 - ’05. proprietary
orbiter 3D graphics library

ESYView. Wargame simulator & briefing
tool. Wrote everything from the ground up

C++ frameworks

tcl/tk frameworks

multiple JSP frameworks

open source
rico. one of the early ajax/js
frameworks (2005)

launched yahoo! design pattern library
(2006)

worked closely with yui team (and built
first carousel)

moving to a lean tech stack

using open source at paypal

working in open source model
internal github revolutionized our internal development

rapidly replaced centralized component/platform
teams with de-centralized, distributed, social coding
style of develoment. innovation democratized.

every developer encouraged to experiment and
generate repos to share as well as to fork/pull request

giving back to open source
we have a string of projects that will be coming to
external github

node bootstrap (similar to yeoman)
contributions to bootstrap (for accessibility)
contributions to bootstrap (for internationalization)
component repository framework for github (similar to
bower)
and more...

we made our ui bits portable
the ui bits can be delivered continuously

the ui bits can be run in client or server

the ui bits can be deployed on cdn

Lean UI Stack
Based on open source UI stack including Twitter Bootstrap.

Supports Responsive Web Design

we made our ui bits portable
the ui bits can be delivered continuously

the ui bits can be run in client or server

the ui bits can be deployed on cdn

Lean UI Stack
Based on open source UI stack including Twitter Bootstrap.

Supports Responsive Web Design

NodeJSPrototyping
Stack

we made our ui bits portable
the ui bits can be delivered continuously

the ui bits can be run in client or server

the ui bits can be deployed on cdn

Lean UI Stack
Based on open source UI stack including Twitter Bootstrap.

Supports Responsive Web Design

NodeJSPrototyping
Stack Sparta 2.3 Production

Stack

(Java)

we made our ui bits portable
the ui bits can be delivered continuously

the ui bits can be run in client or server

the ui bits can be deployed on cdn

Lean UI Stack
Based on open source UI stack including Twitter Bootstrap.

Supports Responsive Web Design

NodeJSPrototyping
Stack Sparta 2.3 Production

Stack

Lean UI
Dust templates, Backbone.js, nougat.js, other JS,

LESS templates (CSS), Twitter Bootstrap,
RWD (Responsive Web Design), RESS (Responsive Server Side)

(Java)

requirements for lean Stack
independent of the backend language

flexible enough to run in either the server or in the client

equally good at building web sites as it is building web applications

pushable outside of the application stack (publish model)

cleanly separated from the backend/app code (ideally by JSON)

utilize what is common to developers

quick & easy to build & tear down components

rapid prototyping
what to keep in mind for prototyping

use html prototyping

html vs prototype tools
why html5/css3/js?

with kits like twitter bootstrap or jetstrap it is really easy to
create a nice looking UI really fast
right fidelity for user testing
can keep the UI bits for production
is a forcing function to get front end engineers and
designer to collaborate

suggestion:

twitter bootstrap (and jetstrap)

prototyping tools
see:

list of prototyping tools on my blog: http://bit.ly/SfWygk

two that we also use:

Axure RP
InVision

https://bitly.com/#
https://bitly.com/#

use chrome

chrome is your os
don’t initially worry about cross-browser

though don’t be stupid

chrome is most consistent, compliant browser across
windows and mac

great developer eco-system

use node.js for app prototyping

rich eco-system
multitudes of npm modules available

recommend express for routing, asynch for
simplifying event’ed programming

something like require.js for modularization of code

node webcore
discuss our use of node.js, nodewebcore and how
our UI bits stay the same on the proto stack as well
as the production stack

even better if you can have node as your runtime

yeoman?

use js templating
not just any templating, JS templating

why?
makes all of your rendering bits be javascript

can run the bits on the client or the server (node.js or
rhinoscript, etc.)

can treat UI bits as CDN assets

templating in general makes life much simpler for
rendering UI bits

forces clean separation of view & model

use the power of css

suggestions
don’t hack your prototype (keep your css clean)

start with something like LESS

if you are using bootstrap that fits nicely and you can
change stylesheet for your company’s visual L&F
gives you the power of variables and mixins

use CSS animations and just let the other browsers
degrade to lesser experience

there are also gradient generators for cross browser

(http://www.colorzilla.com/gradient-editor/)

apis are your friend

apis
public APIs can bootstrap you

node is a great way to mock APIs as well

can prototype the apis as spec for the dev team

json is the bridge
duh. what else would you use?

use the cloud

use the cloud
get your code live on a URL as fast as possible

pick a solution that uses hosted node.js

component libraries

components
twitter bootstrap

twitter bower is a good example of managing
components via github

(we will be releasing an simpler open source library
called garnish that is similar to bower)

other suggestions

other suggestions
resist the desire to “beautify” the design. Focus on
learning

use a tool like Asana for collaboration

test on real devices early & often

use github

use continous deployment

UI Architecture Concerns

client vs server
which is better?

which is better?
sage wisdom: “It depends”

for page-to-page, server side rendering is usually
simplest

for app (like in mobile), client rendering often works
best

but often it is a blend of the two (utilizing ajax on client
side to fetch server-side rendered html)

best solution is to be able to support either via
rendering portability

twitter #fail
recall twitter had to back away from their “all client
side rendering approach”

in reality this was a very naive and bad idea

stopped the double rendering of !#
removed javascript execution on client and switched to
server side
loading only what is needed (using commonjs modules)

http://engineering.twitter.com/2012/05/improving-performance-on-twittercom.html

application vs page

application vs page
one size doesn’t fit all

but watch out for mobile, it is often a mistake to do
page to page experience

exception is sometimes managing a flow

native vs web

native vs web
native is great in low latency and for really high fidelity
touch experiences. especially if there is a lot to scroll.

however you lose: rapid release cycle, simple a/b
testing and the ability to use standard web
developers to build the experience.

hybrid is another approach

avoid trying to mimic native controls
use something like phonegap or use cordova views for a
bridge

RWD vs RESS

responsive web design (RWD)
Let’s remove the religion and remember the purpose:
we want to have an omni-channel experience

For content, RWD is a no-brainer. Use CSS media
queries and adapt

And BTW, always right your code so that is adaptive

Forces the conversation with design/product

Downsides: payload maybe too large on small device;
fights the ability to freely experiment in a channel

responsive server side (RESS)
RESS. coined by Luke Wroblewski.

use server-side detection (like WURFL) to choose the
code to “responsively” deliver

advantages: smaller, customized payload;
experimentation in different channels encourage

mobile first

mobile first myths
myth: mobile first means designing for mobile
devices first and in isolation. only when the entire
mobile experience is designed / built / launched
should you consider the other form factors.

fact: no! absolutely not! mobile first means designing
for an ecosystem of form factors simultaneously –
mobile, tablet, desktop – but through the prism of
mobile. (omni-channel)

the limited real estate of a mobile device forces
simplification that is then applied also to the other
form factors.

mobile first myths
myth: Mobile First means we will be building for
lowest common denominator (like feature phones).

fact: No! Mobile First is about mobile capabilities as
much as the constraints.

mobile first myths
myth: We always build one experience that adapts
across screens (mobile, tablet, desktop, etc.)

fact: In some cases this is true. But in others we may
have distinct experiences for each channel.

mobile first myths
myth: Mobile First means we are creating web (non-
native) since we want the experience to adapt to
other channels.

fact: Mobile First is not tied to the technical solution.
There are strategies that different technologies may
allow and others not. But Mobile First is about the
product and design approach that can be applied to
any tech stack.

mobile first myths
myth: Mobile First means that we always build and launch
a mobile experience first.

fact: No, but we should do a rationalization of minimum
viable product (MVP), and mobile first is a technique to
arrive at this.

mobile first is really a mindset to always be rationalizing
product and features in light of all the ways users interact
with our products.

mobile first is thinking about a user's goal for a page and
what the screen should provide to accomplish it. It's goals
and needs, not just mobile.

mobile first myths
myth: only the mobile team needs to deal with
gesture and touch interactions

fact: it is the responsibility of all teams to understand
and account for the way a customer will interact with
an interface (touch/gesture/keyboard/mouse)

mobile first myths
myth: mobile first limits creativity when building
experiences.

fact: mobile first affords the ability to focus on what's
needed and then explore appropriate innovative
solutions for full browser/desktop capabilities.

break
20 minutes

lean ux anti-patterns
what should you be on the look-out for?

genius
designer
all design emanates from an
huber designer. Team doesn’t
collaboratively participate in
design/ideation.

solution: Keep the inspiration
of genius designer but bring in
others to brainstorm. focus on
MVP (minimal viable product) to
test with customers
immediately. critical to build
team success early.

tribal group
when a team is very small
members are forced to work
across disciplines. As soon as
team gets bigger, tribes reform
around disciplines.
collaboration stops.

solution: You have to keep
team reasonably small. And
the leaders in each discipline
must form a tribe that works
across disciplines.

newcomer
lean teams will form shared
understanding. however, when
new team member joins we
assume this hard earned
understanding will just happen.

solution: the team must
immediately stop and initiate
the newcomer. be patient,
answer questions, reset
vocabulary and enjoy the new
voice in the team.

addicted
teams will often make a good
start by trying out new
behaviors and seemingly leave
old behaviors behind. beware!
old habits will creep back in.

solution: you must do it long
enough and be successful
with lean ux to ensure team
members internalize the new
habits.

naysayer
with collaboration so important
it is key to believe in the
process to create great
products. a single naysayer
can bring the team down in an
instant.

solution: the naysayer must
either learn new techniques or
leave the team.

visitor
input from outside the team is
essential. however, watch out.
people cycling in & out of the
team can cause the same
disruption that the newcomer
anti-pattern causes.

solution: customer trumps
visitor. take input. test early and
often with customers. that is
the only “visitor” that ultimately
matters.

magic tool
design & prototyping tools can
accelerate ideation and design.
however, be careful, tools that
empower prototyping can
enable designers to work in
isolation.

solution: use tools as means
to collaborate. never revert to
“delivery” model of design.

going dark
when a developer, product
manager, or designer goes
dark for more than a day (or
two) the team is losing valuable
collaboration.

solution: working in isolation
is necessary from time to time.
however, limit to short periods
of time. make work
continuously visible.

change of
cadence
change of cadence is actually
a good and normal happening.
however, whenever the rhythm
changes it can bring
productivity down.

solution: prepare the team
for the change and quickly get
focus and re-establish
cadence.

too many
cooks
the work needs to be divided
up among different types of
cooks (Chef de cuisine, Sous-
chef, Chef de partie)

solution: have clear decision
makers in each discipline and
have specific roles (you can
also rotate these functions).

not enough
pizza
when a team suddenly scales
up in size the team is in danger
of losing cadence, shared
understanding and focus

solution: keep teams to 2-
pizza size. clear lines of
responsibilities and laser focus
for the team must be
maintained

tower of
babel
shared understanding is key to
lean ux. however, it is easy to
assume too quickly that team
members are speaking the
same language

solution: always ask, “what
do you mean by x?”. always
ensure other disciplines
understand your jargon.

you got mail
teams can revert to email over
collaboration. also, geo-
graphically distributed teams
can fall into delivery by email vs
collaboration.

solution. Utilize high
bandwidth communication
(face to face, skype,
telepresence, magic
whiteboards, phone, etc.)

inmates run
the asylum
this is from Alan Cooper’s
classic book of the same title.
when engineers drive design
the inmates are running the
asylum.

solution. front end engineers
must partner with product/
design and get out ahead of
backend engineers.

perfectionist
not embracing the challenge of
the unknown, the perfectionist
will not share their work till it is
perfect. easy for designers to
fall into this trap.

solution: engineers must not
judge rough designs, instead
they should use as
springboard for collaboration.
designers must realize iterative
will yield better designs.

weakest link
team members who aren’t up
to the challenge of close
proximity & transparency can
cause a team to stumble

solution: talent acquisition
must match this style of
product delivery. must have
freedom to replace talent.

the wall
walls between teams can
happen when
• we allow tribes to form
• we see the other teams as
separate delivery factories
• geo-distributed teams

solution: always work in small
teams, collaborating not
delivering and build shared
understanding.

tangled up
technology
unless the technology stack is built
to have a clear separation from
experience & services the lean
team cannot make rapid progress.
watch out when dev teams care
too much about the specific
version of the UI.

solution: key patterns incllude
building services, APIs and CLIs.
Keep the services & UI separate.

q & a
final q & a and wrapup

follow me on twitter @billwscott

picture credits
http://www.flickr.com/photos/wuschl2202/531914709/sizes/o/in/photostream/
http://www.flickr.com/photos/a_ninjamonkey/3565672226/sizes/z/in/photostream/
http://www.flickr.com/photos/funky64/4367871917/sizes/z/in/photostream/
http://www.flickr.com/photos/emdot/9938521/sizes/o/in/photostream/
http://www.flickr.com/photos/gregory_bastien/2565132371/sizes/z/in/photostream/
http://www.flickr.com/photos/trvr3307/3703648270/sizes/z/in/photostream/
http://www.flickr.com/photos/legofenris/5426012042/sizes/l/in/photostream/
http://www.flickr.com/photos/cleaneugene/6866436746/sizes/c/in/photostream/
http://www.flickr.com/photos/66309414@N04/6172219058/sizes/l/in/photostream/
http://www.flickr.com/photos/nicmcphee/2954167050/sizes/l/in/photostream/
http://www.flickr.com/photos/pasukaru76/6151366656/sizes/l/in/photostream/
http://www.flickr.com/photos/brianmitchell/2113553867/sizes/o/in/photostream/
http://www.flickr.com/photos/ciscel/422253425/sizes/z/in/photostream/
http://www.flickr.com/photos/zebble/6817861/sizes/l/in/photostream/
http://www.flickr.com/photos/nicasaurusrex/3069602246/sizes/l/in/photostream/
http://www.flickr.com/photos/nathangibbs/98592171/sizes/z/in/photostream/
http://www.flickr.com/photos/neilsingapore/4047105116/sizes/l/
http://www.flickr.com/photos/smb_flickr/439040132/
http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/st3f4n/4193370268/sizes/l/
http://www.flickr.com/photos/eole/380316678/sizes/z/
http://www.flickr.com/photos/cobalt/3035453914/sizes/z/
http://www.flickr.com/photos/mbiskoping/6075387388/
http://www.flickr.com/photos/fragglerawker/2370316759/sizes/z/
http://www.flickr.com/photos/soldiersmediacenter/4685688778/sizes/z/

http://www.flickr.com/photos/wuschl2202/531914709/sizes/o/in/photostream/
http://www.flickr.com/photos/wuschl2202/531914709/sizes/o/in/photostream/
http://www.flickr.com/photos/a_ninjamonkey/3565672226/sizes/z/in/photostream/
http://www.flickr.com/photos/a_ninjamonkey/3565672226/sizes/z/in/photostream/
http://www.flickr.com/photos/funky64/4367871917/sizes/z/in/photostream/
http://www.flickr.com/photos/funky64/4367871917/sizes/z/in/photostream/
http://www.flickr.com/photos/emdot/9938521/sizes/o/in/photostream/
http://www.flickr.com/photos/emdot/9938521/sizes/o/in/photostream/
http://www.flickr.com/photos/gregory_bastien/2565132371/sizes/z/in/photostream/
http://www.flickr.com/photos/gregory_bastien/2565132371/sizes/z/in/photostream/
http://www.flickr.com/photos/trvr3307/3703648270/sizes/z/in/photostream/
http://www.flickr.com/photos/trvr3307/3703648270/sizes/z/in/photostream/
http://www.flickr.com/photos/legofenris/5426012042/sizes/l/in/photostream/
http://www.flickr.com/photos/legofenris/5426012042/sizes/l/in/photostream/
http://www.flickr.com/photos/cleaneugene/6866436746/sizes/c/in/photostream/
http://www.flickr.com/photos/cleaneugene/6866436746/sizes/c/in/photostream/
http://www.flickr.com/photos/66309414@N04/6172219058/sizes/l/in/photostream/
http://www.flickr.com/photos/66309414@N04/6172219058/sizes/l/in/photostream/
http://www.flickr.com/photos/nicmcphee/2954167050/sizes/l/in/photostream/
http://www.flickr.com/photos/nicmcphee/2954167050/sizes/l/in/photostream/
http://www.flickr.com/photos/pasukaru76/6151366656/sizes/l/in/photostream/
http://www.flickr.com/photos/pasukaru76/6151366656/sizes/l/in/photostream/
http://www.flickr.com/photos/brianmitchell/2113553867/sizes/o/in/photostream/
http://www.flickr.com/photos/brianmitchell/2113553867/sizes/o/in/photostream/
http://www.flickr.com/photos/ciscel/422253425/sizes/z/in/photostream/
http://www.flickr.com/photos/ciscel/422253425/sizes/z/in/photostream/
http://www.flickr.com/photos/zebble/6817861/sizes/l/in/photostream/
http://www.flickr.com/photos/zebble/6817861/sizes/l/in/photostream/
http://www.flickr.com/photos/nicasaurusrex/3069602246/sizes/l/in/photostream/
http://www.flickr.com/photos/nicasaurusrex/3069602246/sizes/l/in/photostream/
http://www.flickr.com/photos/nathangibbs/98592171/sizes/z/in/photostream/
http://www.flickr.com/photos/nathangibbs/98592171/sizes/z/in/photostream/
http://www.flickr.com/photos/neilsingapore/4047105116/sizes/l/
http://www.flickr.com/photos/neilsingapore/4047105116/sizes/l/
http://www.flickr.com/photos/smb_flickr/439040132/
http://www.flickr.com/photos/smb_flickr/439040132/
http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/st3f4n/4193370268/sizes/l/
http://www.flickr.com/photos/st3f4n/4193370268/sizes/l/
http://www.flickr.com/photos/eole/380316678/sizes/z/
http://www.flickr.com/photos/eole/380316678/sizes/z/
http://www.flickr.com/photos/cobalt/3035453914/sizes/z/
http://www.flickr.com/photos/cobalt/3035453914/sizes/z/
http://www.flickr.com/photos/mbiskoping/6075387388/
http://www.flickr.com/photos/mbiskoping/6075387388/
http://www.flickr.com/photos/fragglerawker/2370316759/sizes/z/
http://www.flickr.com/photos/fragglerawker/2370316759/sizes/z/
http://www.flickr.com/photos/soldiersmediacenter/4685688778/sizes/z/
http://www.flickr.com/photos/soldiersmediacenter/4685688778/sizes/z/

picture credits (continued)
http://www.flickr.com/photos/dahlstroms/4083220012/sizes/l/
http://www.flickr.com/photos/don2/53874580/sizes/z/
http://www.flickr.com/photos/hao_nguyen/3634552812/sizes/z/
http://www.flickr.com/photos/42573918@N00/8194636033/
http://www.flickr.com/photos/pagedooley/2420194539/sizes/z/
http://www.flickr.com/photos/neilsingapore/4047105116/sizes/l/
http://www.flickr.com/photos/smb_flickr/439040132/
http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/st3f4n/4193370268/sizes/l/
http://www.flickr.com/photos/eole/380316678/sizes/z/
http://www.flickr.com/photos/cobalt/3035453914/sizes/z/
http://www.flickr.com/photos/mbiskoping/6075387388/
http://www.flickr.com/photos/fragglerawker/2370316759/sizes/z/
http://www.flickr.com/photos/soldiersmediacenter/4685688778/sizes/z/
http://www.flickr.com/photos/janed42/5033842895/sizes/z/
http://www.flickr.com/photos/9619972@N08/1350940605/
http://www.flickr.com/photos/alanenglish/483251259/sizes/z/

thanks flickr!

http://www.flickr.com/photos/dahlstroms/4083220012/sizes/l/
http://www.flickr.com/photos/dahlstroms/4083220012/sizes/l/
http://www.flickr.com/photos/don2/53874580/sizes/z/
http://www.flickr.com/photos/don2/53874580/sizes/z/
http://www.flickr.com/photos/hao_nguyen/3634552812/sizes/z/
http://www.flickr.com/photos/hao_nguyen/3634552812/sizes/z/
http://www.flickr.com/photos/42573918@N00/8194636033/
http://www.flickr.com/photos/42573918@N00/8194636033/
http://www.flickr.com/photos/pagedooley/2420194539/sizes/z/
http://www.flickr.com/photos/pagedooley/2420194539/sizes/z/
http://www.flickr.com/photos/neilsingapore/4047105116/sizes/l/
http://www.flickr.com/photos/neilsingapore/4047105116/sizes/l/
http://www.flickr.com/photos/smb_flickr/439040132/
http://www.flickr.com/photos/smb_flickr/439040132/
http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/st3f4n/4193370268/sizes/l/
http://www.flickr.com/photos/st3f4n/4193370268/sizes/l/
http://www.flickr.com/photos/eole/380316678/sizes/z/
http://www.flickr.com/photos/eole/380316678/sizes/z/
http://www.flickr.com/photos/cobalt/3035453914/sizes/z/
http://www.flickr.com/photos/cobalt/3035453914/sizes/z/
http://www.flickr.com/photos/mbiskoping/6075387388/
http://www.flickr.com/photos/mbiskoping/6075387388/
http://www.flickr.com/photos/fragglerawker/2370316759/sizes/z/
http://www.flickr.com/photos/fragglerawker/2370316759/sizes/z/
http://www.flickr.com/photos/soldiersmediacenter/4685688778/sizes/z/
http://www.flickr.com/photos/soldiersmediacenter/4685688778/sizes/z/
http://www.flickr.com/photos/janed42/5033842895/sizes/z/
http://www.flickr.com/photos/janed42/5033842895/sizes/z/
http://www.flickr.com/photos/9619972@N08/1350940605/
http://www.flickr.com/photos/9619972@N08/1350940605/
http://www.flickr.com/photos/alanenglish/483251259/sizes/z/
http://www.flickr.com/photos/alanenglish/483251259/sizes/z/

APPENDIX
JavaScript Landscape

JS Libraries
YUI

Ext.js

jQuery

Dojo

and 100s more

Component Libraries
YUI

jQueryUI

Ext.js

Twitter Bootstrap

Foundation

Kendo UI

JS Templating Solutions
See LinkedIn article on “Leaving JSPs in the Dust” for
a reference to template smack down

Many of these exist (maybe 50+). Few of note:

Mustache, Handlebar, Dust, Ember, Underscore, JsViews,
Pure, Jade, Google closure templates

Client Frameworks
backbone.js

ember.js

angular.js

spine.js

knockout.js

Full Stack
tower.js

derby

wakanda

meteor

flatiron

mojito

Mobile/Touch
Sencha Touch

jQuery Mobile

Lighter versions of jQuery Mobile

Zepto.js
Snack.js
$dom
140medley
xui

http://tutorialzine.com/2012/04/5-lightweight-jquery-alternatives/

Mobile native/web solutions
appcelerator

phonegap/cordova views

Packaging/Modules
require.js

labJS

script.js

curl.js

node-browserify

ender

Build solutions
lumbar

code surgeon

requireJS

brunch

grunt

