
bill scott (@billwscott)
sr. director, user interface engineering, paypal. O’Reilly Fluent webcast. May 15, 2013

 kicking up the dust with nodejs
 refactoring paypal’s tech stack to enable lean ux

at Netflix 90% or more of
the “ui bits” were thrown
away every year.

doesn’t take too many
tests to result in lots of
throw away code.

followed buid/test/learn

the epiphany
design for volatility

paypal vs netflix

paypal circa 2011

roll your own.
disconnected delivery
experience. culture of
long shelf life. inward

focus. risk averse.

tangled up
technology
big problem. technology and
processes not geared to
build/test/learn.

new dna @paypal
jan 2012
fleshed out ui layer that could
support rapid experimentation

march 2012
david Marcus becomes president
of PayPal

april 2012
formed lean ux team to reinvent
checkout experience

in the midst of transformation

a tale of two stacks (c++ & java)

two non-standard stacks

new stack tied to Java

“one word” change could
take 6 weeks to fix on c++
stack

c++ java

xml jsp

proprietary
ui

proprietary
ui

old new’ish

long
release
cycles

decision was to move to java

migration was already in
place to leave the c++/
xml stack behind

some odd choices
preceded this: write
everything in java (html,
css & js!!)

c++ java

xml jsp

proprietary
ui

proprietary
uiX
old new’ish

but we wanted to support lean ux

whiteboard
to code code to usability

product/design
team

user interface
engineers

usability/customers

enabling a living spec

engineering stack requirements
treat prototype & production the same
allow rapid sketch to code life cycle
allow quick changes during usability studies (RITE)
support being the “living spec”

lean ux
designing products for build/
measure/learn (lean startup)
requires 3 rules to be followed
at all times

get to & maintain a shared
understanding
form deep collaboration
across disciplines
keep continuous customer
feedback flowing

free to iterate and drive agile

 user interface engineering - agile scrum team

 lean ux - lean team track

 engineering - agile scrum teamsprint 0

usability usability usability usability usability

release release release release

{agile

FOCUS ON LEARNING

FOCUS ON DELIVERING (& LEARNING)

lean
engineering

engineering
for learning

old stack not designed for learning

this new stack was not
conducive to prototyping

followed an “enterprise
application” model. ui
gets built into the “app”

ajax/components all
done server-side
(subclass java controller)

java

jsp

proprietary
ui

prototyping
was hard

“ui bits”
could only

live here

step 1
set the ui bits free

separate the ui bits
code = JS

(backbone)
templates = JS

{dust}
style = CSS

(less)
images

re-engineered the user
interface stack so that
the only artifacts are:
• javascript
• css
• images

ditched the server-side
mentality to creating UIs
• no more server-side only

templates
• no more server-side

components
• no more server-side

managing the ui

use javascript templating

templates get converted
to javascript
<p>Hello {name}</p>

we use dust.js

code = JS
(backbone)

templates = JS
{dust}

style = CSS
(less)

images

JavaScript
compiles to...

javascript
executed
to generate ui

ui bits now just natural web artifacts

server-side language independent

server/client agnostic

CDN ready

cacheable

rapid to create

code = JS
(backbone)

templates = JS
{dust}

style = CSS
(less)

images

portable in all directions

JS templating can be run
in client browser or
server on the production
stack

we can drag & drop the
ui bits from prototyping
stack to the production
stack

java
(rhinoscript)

node.js

{dust}
JS template

prototype
stack

production
stack

{dust}
JS template

client OR

server

either stack

started using nodejs for proto stack

whiteboard
to code code to usability

product/design
team

user interface
engineers

usability/customers

enabled rapid development (coupled with dustjs)

started using nodejs for proto stack

whiteboard
to code code to usability

product/design
team

user interface
engineers

usability/customers

enabled rapid development (coupled with dustjs)

node.js (set up as prototype stack)

backbone{dust} less images

free to turn sketch to code
forcing function.

brought about a close collaboration between engineering
and design
created a bridge for shared understanding

required a lot of confidence and transparency

free to test frequently with users

step 2
embrace open source

use open source religiously

work in open source model
internal github revolutionized
our internal development

rapidly replaced centralized
platform teams

innovation democratized

every developer encouraged
to experiment and generate repos
to share as well as to fork/pull request

give back to open source
we have a string of projects that will be open sourced

node bootstrap (similar to yeoman)
contributions to bootstrap (for accessibility)
and more...

step 3
release the kraken

project kraken
ready nodejs for production

enable all of standard paypal
services

but do it in a friendly npm way
monitoring, logging, security,
content, local resolution, analytics,
authentication, dust rendering,
experimentation, packaging,
application framework, deployment,
session management, service access, etc.

mvc framework/scaffolding. hello world in 1 minute.

one stack to rule them all

single stack creates
seamless movement
between lean ux and
agile

blended team

app is the ui

node.js

{dust}
JS template

prototype
&

production
stack

client

server

introducing nodejs into your org
get the camel’s nose under the tent

start as an API proxy (shim) to really old services
use as a rapid prototyping stack

move into the tent
find a good proof of concept API or application to begin
to scale
do it in parallel and test till scales

do it with talent
ensure best developers are on the initial work to set the
standard

a few other key items
github democratizes coding & decentralizes teams

bower provides a clean way to componentize the ui

requirejs makes packaging simple and enforces modules

running internal npm service drives modularization

having a CLI for creating/extending apps is empowering

less cleans up css code

backbone provides standard client event modeling

set the ui free
embrace open source
release the kraken

the steps we took

follow me on twitter
@billwscott

